Abstract

Platinum nanoparticles loaded on a nitrogen-doped carbon nanotubes exhibit a brilliant hydrogen evolution reaction (HER) in an alkaline solution, but their bifunctional hydrogen and oxygen evolution reaction (OER) has not been reported due to the lack of a strong Pt-C bond. In this work, platinum nanoparticles bonded in carbon nanotubes (Pt-NPs-bonded@CNT) with strong Pt-C bonds are designed toward ultralow overpotential water splitting ability in alkaline solution. Benefit from the strong interaction between platinum and high conductivity carbon nanotube substrates through the Pt-C bond also the platinum nanoparticles bonded in carbon nanotube can provide more stable active sites, as a result, the Pt-NPs-bonded@CNT exhibits excellent hydrogen evolution in acid and alkaline solution with ultralow overpotential of 0.19 and 0.23 V to reach 1000 mA cm-2, respectively. Besides, it shows superior oxygen evolution electrocatalysis in alkaline solution with a low overpotential of 1.69 V at 1000 mA cm-2. Furthermore, it also exhibits high stability over 110 h against the evolution of oxygen and hydrogen at 1000 mA cm-2. This strategy paves the way to the high performance of bifunctional electrocatalytic reaction with extraordinary stability originating from optimized electron density of metal active sites due to strong metal-substrate interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call