Abstract

InP quantum dots (QDs)-based light-emitting diodes (QLEDs) are considered as one of the most promising candidates for environmentally cadmium (Cd)-free electroluminescence devices. However, the performance of InP QLEDs still lags far behind that of Cd-containing QLEDs, which limits their practical applications in next-generation displays and lighting. Here, we report an all-solution processed green InP QLED, which is enabled by an electron transport layer (ETL) of In-doped ZnO (IZO) nanoparticles (NPs). The ETL of IZO NPs can not only suppress the exciton quenching of InP QDs emitting layer due to the reduced defect states, but also improve the charge balance by partially blocking the injection of electrons, and thus the device performance. The optimized InP QLED exhibits a maximum external quantum efficiency (EQE) of 5.42% corresponding to a current efficiency (CE) of 21.22 cd A <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">−1</sup> , which is three times higher than that of the control device based on ZnO ETL, respectively. Our work suggests that IZO NPs can function as a good ETL material in QLEDs and other optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.