Abstract

In all-solution processed inverted quantum dots based light emitting diodes (QLEDs), the solvent erosion on the quantum dot (QD) layer prevents devices from reaching high performance. By employing an orthogonal solvent 1,4-dioxane for the hole transport layer (HTL) poly(9-vinlycarbazole) (PVK), the external quantum efficiencies (EQE) of red QLED is increased 4-fold, while the luminous efficiencies (LE) of blue QLED is enhanced by 25 times, compared to the previous devices' record. To further improve the device efficiency and reduce the efficiency roll-off, solution processed PVK/poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)] (TFB) double-layer HTL is introduced to facilitate hole injection with stepwise energy level. By reducing the hole injection barrier, the turn-on voltage of QLEDs decreases from 3.4 to 2.7 V for red, from 5.1 to 2.7 V for green, and from 5.3 to 4.1 V for blue. The peak LE reach 22.1 cd/A, 21.4 cd/A, and 1.99 cd/A, while the maximum EQE reach 12.7%, 5.29%, and 5.99%, for red, green, and blue QLEDs, respectively. To the best of our knowledge, the red and blue QLEDs exhibit the best device performance among all the all-solution processed inverted QLEDs. In addition, the blue QLED is the champion among all the inverted QLEDs, including the devices fabricated by thermal evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call