Abstract

Brain tumor is among the deadliest cancers, whose effective treatment is partially dependent on the accurate diagnosis of the tumor type. Convolutional neural networks (CNNs), which have been the state-of-the-art in brain tumor classification, fail to identify the spatial relations in the image. Capsule networks, proposed to overcome this drawback, are sensitive to miscellaneous backgrounds and cannot manage to focus on the main target. To address this shortcoming, we have recently proposed a capsule network-based architecture capable of taking both brain images and tumor rough boundary boxes as inputs, to have access to the surrounding tissue as well as the main target. Similar to other architectures, however, this network requires extensive search within the space of all possible configurations, to find the optimal architecture. To eliminate this need, in this study, we propose a boosted capsule network, referred to as BoostCaps, which takes advantage of the ability of boosting methods to handle weak learners, by gradually boosting the models. BoosCaps, to the best of our knowledge, is the first capsule network model that incorporates an internal boosting mechanism. Our results show that the proposed BoostCaps framework outperforms its single capsule network counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.