Abstract
We prove that factor groups of cartesian powers of finite non-abelian simple groups cannot be countably infinite. Thisis not our main result, but it had been our original aim. The proof is based on a similar fact concerning σ-complete Boolean algebras, and on a representation of certain subcartesian powers of a group in its group ring over a Boolean ring. This representation, to which we give the name “Boolean power”, will be our central theme, and we begin with it.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have