Abstract

Abstract We study the problem of extending an order-preserving real-valued Lipschitz map defined on a subset of a partially ordered metric space without increasing its Lipschitz constant and preserving its monotonicity. We show that a certain type of relation between the metric and order of the space, which we call radiality, is necessary and sufficient for such an extension to exist. Radiality is automatically satisfied by the equality relation, so the classical McShane–Whitney extension theorem is a special case of our main characterization result. As applications, we obtain a similar generalization of McShane’s uniformly continuous extension theorem, along with some functional representation results for radial partial orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.