Abstract
Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fischer and Peralta (2002), and Find et al. (2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimension dim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity of f is at least [dim(f)/2]. For MC 3, this implies that there are no equivalence classes other than those 24 identified in Çalık et al. (2018). Using the techniques from Çalık et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number of n-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cryptography and communications : discrete structures, Boolean functions and sequences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.