Abstract

A special metric of interest about Boolean functions is multiplicative complexity (MC): the minimum number of AND gates sufficient to implement a function with a Boolean circuit over the basis {XOR, AND, NOT}. In this paper we study the MC of symmetric Boolean functions, whose output is invariant upon reordering of the input variables. Based on the Hamming weight method from Muller and Preparata (1975), we introduce new techniques that yield circuits with fewer AND gates than upper bounded by Boyar et al. in 2000 and by Boyar and Peralta in 2008. We generate circuits for all such functions with up to 25 variables. As a special focus, we report concrete upper bounds for the MC of elementary symmetric functions and counting functions with up to n = 25 input variables. In particular, this allows us to answer two questions posed in 2008: both the elementary symmetric and the counting functions have MC 6. Furthermore, we show upper bounds for the maximum MC in the class of n-variable symmetric Boolean functions, for each n up to 132.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.