Abstract
The study aimed to analyze bone regeneration in critical-size defects using hybrid scaffolds biomechanically adapted to the specific defect and adding the growth factor rhBMP-2.For this animal study, ten minipigs underwent bilateral defects in the corpus mandibulae and were subsequently treated with novel cylindrical hybrid scaffolds. These scaffolds were designed digitally to suit the biomechanical requirements of the mandibular defect, utilizing finite element analysis. The scaffolds comprised zirconium dioxide-tricalcium phosphate (ZrO2-TCP) support struts and TCP foam ceramics. One scaffold in each animal was loaded with rhBMP-2 (100 μg/cm³), while the other served as an unloaded negative control. Fluorescent dyes were administered every 2 weeks, and computed tomography (CT) scans were conducted every 4 weeks. Euthanasia was performed after 3 months, and samples were collected for examination using micro-CT and histological evaluation of both hard and soft tissue.Intravital CT examinations revealed minor changes in radiographic density from 4 to 12 weeks postoperatively. In the group treated with rhBMP-2, radiographic density shifted from 2513 ± 128 (mean ± SD) to 2606 ± 115 Hounsfield units (HU), while the group without rhBMP-2 showed a change from 2430 ± 131 to 2601 ± 67 HU. Prior to implantation, the radiological density of samples measured 1508 ± 30 mg HA/cm³, whereas post-mortem densities were 1346 ± 71 mg HA/cm³ in the rhBMP-2 group and 1282 ± 91 mg HA/cm³ in the control group (p = 0.045), as indicated by micro-CT measurements. The histological assessment demonstrated successful ossification in all specimens. The newly formed bone area proportion was significantly greater in the rhBMP-2 group (48 ± 10%) compared with the control group without rhBMP-2 (42 ± 9%, p = 0.03). The mean area proportion of remaining TCP foam was 23 ± 8% with rhBMP-2 and 24 ± 10% without rhBMP-2.Successful bone regeneration was accomplished by implanting hybrid scaffolds into critical-size mandibular defects. Loading these scaffolds with rhBMP-2 led to enhanced bone regeneration and a uniform distribution of new bone formation within the hybrid scaffolds. Further studies are required to determine the adaptability of hybrid scaffolds for larger and potentially segmental defects in the maxillofacial region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have