Abstract

Resonant two-photon ionization spectroscopy has been used to investigate the spectra of the diatomic late transition metal silicides, MSi, M = Fe, Ru, Os, Co, Rh, Ir, Ni, and Pt, in the vicinity of the bond dissociation energy. In these molecules, the density of vibronic states is so large that the spectra appear quasicontinuous in this energy range. When the excitation energy exceeds the ground separated atom limit, however, a new decay process becomes available-molecular dissociation. This occurs so rapidly that the molecule falls apart before it can absorb another photon and be ionized. The result is a sharp drop to the baseline in the ion signal, which we identify as occurring at the thermochemical 0 K bond dissociation energy, D0. On this basis, the measured predissociation thresholds provide D0 = 2.402(3), 4.132(3), 4.516(3), 2.862(3), 4.169(3), 4.952(3), 3.324(3), and 5.325(9) eV for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Using thermochemical cycles, the enthalpies of formation of the gaseous MSi molecules are derived as 627(8), 700(10), 799(10), 595(8), 599(8), 636(10), 553(12), and 497(8) kJ/mol for FeSi, RuSi, OsSi, CoSi, RhSi, IrSi, NiSi, and PtSi, respectively. Likewise, combining these results with other data provides the ionization energies of CoSi and NiSi as 7.49(7) and 7.62(7) eV, respectively. Chemical bonding trends among the diatomic transition metal silicides are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.