Abstract

The early transition metal diatomic sulfides, MS, M = Sc, Y, Ti, Zr, Hf, Nb, and Ta, have been investigated using resonant two-photon ionization spectroscopy in the vicinity of their bond dissociation energies (BDEs). Due to the high density of vibronic states in this energy range, the molecular spectra appear quasicontinuous, and when the excitation energy exceeds the ground separated atom limit, excited state decay by dissociation becomes possible. The dissociation process typically occurs so rapidly that the molecule falls apart before a second photon can be absorbed to ionize the species, leading to a sharp drop in ion signal, which is identified as the 0 K BDE. The observed predissociation thresholds yield BDEs of 4.852(10) eV (ScS), 5.391(3) eV (YS), 4.690(4) eV (TiS), 5.660(4) eV (ZrS), 5.780(20) eV (HfS), 5.572(3) eV (NbS), and 5.542(3) eV (TaS). Utilizing thermochemical cycles, the enthalpies of formation, ΔfH0K o(g), of 182.7(4.3) kJ mol-1 (ScS), 178.3(4.2) kJ mol-1 (YS), 293.1(16.7) kJ mol-1 (TiS), 337.3(8.4) kJ mol-1 (ZrS), 335.0(6.6) kJ mol-1 (HfS), 467.0(8.0) kJ mol-1 (NbS), and 521.5(2.1) kJ mol-1 (TaS) are obtained. Another thermochemical cycle has been used to combine the previously measured M+-S BDEs with the M-S BDEs and atomic ionization energies to obtain the MS ionization energies of 6.44(5) eV (ScS), 6.12(8) eV (YS), 6.78(7) eV (TiS), 6.60(10) eV (ZrS), and 6.88(9) eV (NbS). Using this same cycle, we obtain D0(Hf+-S) = 4.926(20) eV. The bonding trends of the early transition metal sulfides, along with the corresponding selenides, are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.