Abstract

Time series of counts have a wide variety of applications in real life. Analyzing time series of counts requires accommodations for serial dependence, discreteness, and overdispersion of data. In this paper, we extend blockwise empirical likelihood (Kitamura, 1997 [15]) to the analysis of time series of counts under a regression setting. In particular, our contribution is the extension of Kitamura’s (1997) [15] method to the analysis of nonstationary time series. Serial dependence among observations is treated nonparametrically using a blocking technique; and overdispersion in count data is accommodated by the specification of a variance–mean relationship. We establish consistency and asymptotic normality of the maximum blockwise empirical likelihood estimator. Simulation studies show that our method has a good finite sample performance. The method is also illustrated by analyzing two real data sets: monthly counts of poliomyelitis cases in the USA and daily counts of non-accidental deaths in Toronto, Canada.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.