Abstract
Overdispersion is common in models of count data in ecology and evolutionary biology, and can occur due to missing covariates, non-independent (aggregated) data, or an excess frequency of zeroes (zero-inflation). Accounting for overdispersion in such models is vital, as failing to do so can lead to biased parameter estimates, and false conclusions regarding hypotheses of interest. Observation-level random effects (OLRE), where each data point receives a unique level of a random effect that models the extra-Poisson variation present in the data, are commonly employed to cope with overdispersion in count data. However studies investigating the efficacy of observation-level random effects as a means to deal with overdispersion are scarce. Here I use simulations to show that in cases where overdispersion is caused by random extra-Poisson noise, or aggregation in the count data, observation-level random effects yield more accurate parameter estimates compared to when overdispersion is simply ignored. Conversely, OLRE fail to reduce bias in zero-inflated data, and in some cases increase bias at high levels of overdispersion. There was a positive relationship between the magnitude of overdispersion and the degree of bias in parameter estimates. Critically, the simulations reveal that failing to account for overdispersion in mixed models can erroneously inflate measures of explained variance (r2), which may lead to researchers overestimating the predictive power of variables of interest. This work suggests use of observation-level random effects provides a simple and robust means to account for overdispersion in count data, but also that their ability to minimise bias is not uniform across all types of overdispersion and must be applied judiciously.
Highlights
Count data are extremely common in the fields of evolutionary biology and ecology; researchers are often interested in quantifying the factors affecting variables such as how many offspring an individual produces, counts of parasite load, abundance of
One manner in which overdispersion is dealt with involves the use of observation-level random effects (OLRE), which model the extra-Poisson variation in the response variable using a random effect with a unique level for every data point
Noise simulations At low levels of overdispersion, both the Naive model and the OLRE model recovered near identical estimates for all parameters
Summary
How to cite this article Harrison (2014), Using observation-level random effects to model overdispersion in count data in ecology and evolution. One manner in which overdispersion is dealt with involves the use of observation-level random effects (OLRE), which model the extra-Poisson variation in the response variable using a random effect with a unique level for every data point. Data on the efficacy of OLRE as a tool to accurately model overdispersion and recover correct parameter estimates are relatively scarce (but see Bolker et al, 2009; Kery, 2010). This paper uses a simulation approach to address the shortfall in our understanding of the ability of OLRE to cope with the types of overdispersion commonly encountered in mixed models of count data in ecology and evolution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.