Abstract

An important class of nonparametric signal processing methods entails forming a set of predictors from an overcomplete set of basis functions associated with a fast transform (e.g., wavelet packets). In these methods, the number of basis functions can far exceed the number of sample values in the signal, leading to an ill-posed prediction problem. The “basis pursuit” denoising method of Chen, Donoho, and Saunders regularizes the prediction problem by adding an l 1 penalty term on the coefficients for the basis functions. Use of an l 1 penalty instead of l 2 has significant benefits, including higher resolution of signals close in time/frequency and a more parsimonious representation. The l 1 penalty, however, poses a challenging optimization problem that was solved by Chen, Donoho and Saunders using a novel application of interior-point algorithms (IP). This article investigates an alternative optimization approach based on block coordinate relaxation (BCR) for sets of basis functions that are the finite union of sets of orthonormal basis functions (e.g., wavelet packets). We show that the BCR algorithm is globally convergent, and empirically, the BCR algorithm is faster than the IP algorithm for a variety of signal denoising problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call