Abstract
Approximate Bayesian computation (ABC) is a class of Bayesian inference algorithms that targets problems with intractable or unavailable likelihood functions. It uses synthetic data drawn from the simulation model to approximate the posterior distribution. However, ABC is computationally intensive for complex models in which simulating synthetic data is very expensive. In this article, we propose an early rejection Markov chain Monte Carlo (ejMCMC) sampler based on Gaussian processes to accelerate inference speed. We early reject samples in the first stage of the kernel using a discrepancy model, in which the discrepancy between the simulated and observed data is modeled by Gaussian process (GP). Hence, synthetic data is generated only if the parameter space is worth exploring. We demonstrate through theory, simulation experiments, and real data analysis that the new algorithm significantly improves inference efficiency compared to existing early-rejection MCMC algorithms. In addition, we employ our proposed method within an ABC sequential Monte Carlo (SMC) sampler. In our numerical experiments, we use examples of ordinary differential equations, stochastic differential equations, and delay differential equations to demonstrate the effectiveness of the proposed algorithm. We develop an R package that is available at https://github.com/caofff/ejMCMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.