Abstract

An important class of nonparametric signal processing methods is to form a set of predictors from an overcomplete set of basis functions associated with a fast transform. In these methods, the number of basis functions can far exceed the number of samples values in the signal, leading to an ill-posed prediction problem. The 'basis pursuit' denoising method of Chen, Donoho, and Saunders regularizes the prediction problem by adding an L1 penalty term on the coefficients for the basis functions. Use of an L1 penalty instead of L2 has significant benefits, including higher resolution of signals close in time/frequency and a more parsimonious representation. The L1 penalty, however, poses a challenging optimization problem that was solved by Chen, Donoho and Saunders using a novel application of interior point methods. In this paper, we investigate an alternative optimization approach based on 'block coordinate relaxation' (BCR) techniques. We show that BCR is globally convergent, and empirically, BCR is faster than interior point methods for a variety of signal de- noising problems.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.