Abstract
This paper considers a multiple-input-multiple-output (MIMO) system with low-resolution analog-to-digital converters (ADCs). In this system, we propose a novel detection framework that performs data symbol detection without explicitly knowing channel state information at a receiver. The underlying idea of the proposed framework is to exploit supervised learning. Specifically, during channel training, the proposed approach sends a sequence of data symbols as pilots so that the receiver learns a nonlinear function that is determined by both a channel matrix and a quantization function of the ADCs. During data transmission, the receiver uses the learned nonlinear function to detect which data symbols were transmitted. In this context, we propose two blind detection methods to determine the nonlinear function from the training-data set. We also provide an analytical expression for the symbol-vector-error probability of the MIMO systems with one-bit ADCs when employing the proposed framework. Simulations demonstrate the performance improvement of the proposed framework compared to existing detection techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.