Abstract

Urine is an equally attractive biofluid for metabolomics analysis, as it is a challenging matrix analytically. Accurate urine metabolite concentration estimates by Nuclear Magnetic Resonance (NMR) are hampered by pH and ionic strength differences between samples, resulting in large peak shift variability. Here we show that calculating the spectra of original samples from mixtures of samples using linear algebra reduces the shift problems and makes various error estimates possible. Since the use of two-dimensional (2D) NMR to confirm metabolite annotations is effectively impossible to employ on every sample of large sample sets, stabilization of metabolite peak positions increases the confidence in identifying metabolites, avoiding the pitfall of oranges-to-apples comparisons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.