Abstract

Two-dimensional (2D) nuclear magnetic resonance (NMR) methods have shown to be an excellent analytical tool for the identification and characterization of statistically relevant changes in low-abundance metabolites in body fluid. The advantage of 2D NMR in terms of minimized ambiguities in peak assignment, aided in metabolite identifications and comprehensive metabolic profiling comes with the cost of increased NMR data collection time; making it inconvenient choice for routine metabolic profiling. We present here a method for the reduction in NMR data collection time of 2D (1)H-(13)C NMR spectroscopy for the purpose of quantitative metabolic profiling. Our method combines three techniques; which are nonlinear sampling (NLS), forward maximum (FM) entropy reconstruction, and J-compensated quantitative heteronuclear single quantum (HSQC) (1)H-(13)C NMR spectra. We report here that approximately 22-fold reduction in 2D NMR data collection time for the body fluid samples can be achieved by this method, without any compromise in quantitative information recovery of various low abundance metabolites. The method has been demonstrated in standard mixture solution, native, and lyophilized human urine samples. Our proposed method has potential to make quantitative metabolic profiling by 2D NMR as a routine method for various metabonomic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call