Abstract
In this paper we extend the univariate FIGARCH and FIAPARCH models to a bivariate framework. We estimate bivariate error correction FIGARCH and FIAPARCH models between the All Ordinaries Index and its SPI futures using constant correlation and diagonal parameterisations. We therefore employ a flexible estimation approach that captures the long run equilibrium relationship between the two markets, bi-directional return causality, long memory and asymmetries in volatility, and time varying correlations. The results strongly support the use of this approach. Strong bi-directional return causality exists with the index bearing the burden of adjustment to deviations from long run equilibrium. The results also illustrate the importance of allowing for long memory, asymmetries in volatility, and time varying correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.