Abstract

This study aims at assessing the bispectral analysis of blood oxygen saturation (SpO2) from nocturnal oximetry to help in pediatric sleep apnea-hypopnea syndrome (SAHS) diagnosis. Recent studies have found excessive redundancy in the SAHS-related information usually extracted from SpO2, while proposing only two features as a reduced set to be used. On the other hand, it has been suggested that SpO2 bispectral analysis is able to provide complementary information to common anthropometric, spectral, and clinical variables. We address these novel findings to assess whether bispectrum provides new non-redundant information to help in SAHS diagnosis. Thus, we use 981 pediatric SpO2 recordings to extract both the reduced set of features recently proposed as well as 9 bispectral features. Then, a feature selection method based on the fast correlationbased filter and bootstrapping is used to assess redundancy among all the features. Finally, the non-redundant ones are used to train a Bayesian multi-layer perceptron neural network (BYMLP) that estimate the apnea-hypopnea index (AHI), which is the diagnostic reference variable. Bispectral phase entropy was found complementary to the two previously recommended features and a BY-MLP model trained with the three of them reached high agreement with actual AHI (intra-class correlation coefficient = 0.889). Estimated AHI also showed high diagnostic ability, reaching 82.1%, 81.9%, and 90.3% accuracies and 0.814, 0.880, and 0.922 area under the receiver-operating characteristics curve for three common AHI thresholds: 1 e/h, 5 e/h, and 10 e/h, respectively. These results suggest that the information extracted from the bispectrum of SpO2 can improve the diagnostic performance of the oximetry test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.