Abstract
The development of bispecific antibodies (BsAbs) represents a significant advancement in therapeutic antibody design, enabling the simultaneous targeting of two different antigens. This dual-targeting capability enhances therapeutic efficacy, particularly in complex diseases like cancer, where tumor heterogeneity presents a significant challenge for traditional treatments. By bridging two distinct pathways, BsAbs can improve specificity and minimize off-target effects, making them invaluable in therapeutic contexts. Integrating advanced imaging techniques, particularly Correlative Light and Electron Microscopy (CLEM), offers a unique opportunity to visualize the dynamic interactions of BsAbs within cellular environments. CLEM combines the strengths of optical and electron microscopy, allowing researchers to observe real-time antibody-antigen interactions at nanoscale resolution. This synergy not only deepens our understanding of BsAbs' mechanisms of action but also provides critical insights into their spatial distribution, binding kinetics, and functional dynamics in live cells. In this review, the integration of BsAbs and CLEM paves the way for targeted therapeutic strategies, fostering the development of more effective treatments that can adapt to the complexities of disease pathology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have