Abstract

We theoretically study the quasiparticle current behavior of a thermally biased bipolar thermoelectrical superconducting quantum interference proximity transistor, formed by a normal metal wire embedded in a superconducting ring and tunnel-coupled to a superconducting probe. In this configuration, the superconducting gap of the wire can be modified through an applied magnetic flux. We analyze the thermoelectric response as a function of magnetic flux, at fixed temperatures, in the case of a device made of the same superconductor. We demonstrate magnetically controllable, bipolar thermoelectric behavior and discuss optimal working conditions by looking at the thermoelectric power and other figures of merit of the device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.