Abstract

This study focuses on developing hydroxyapatite synthesized from a CaCO3-rich byproduct of sugar beet processing called Carbocal® using a hydrothermal reactor. The purpose of this biomaterial is to enhance the osteoinductivity of implantable surfaces and serve as a bone filler, providing a sustainable and economically more affordable alternative. This research involved compositional analysis and micro- and macrostructural physicochemical characterization, complemented with bioactivity and live/dead assays. The biphasic nature of the Carbocal®-derived sample was significant within the context of the bioactivity concept previously proposed in the literature. The bioactivity of the biomaterial was demonstrated through a viability test, where the cell growth was nearly equivalent to that of the positive control. For comparison purposes, the same tests were conducted with two additional samples: hydroxyapatite obtained from CaCO3 and commercial hydroxyapatite. The resulting product of this process is biocompatible and possesses properties similar to natural hydroxyapatite. Consequently, this biomaterial shows potential as a scaffold in tissue engineering and as an adhesive filler to promote bone regeneration within the context of the circular bioeconomy in the geographical area proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call