Abstract
The present investigation reported the synthesis of silver chloride nanoparticles using Bacillus subtilis. The adsorption of colloidal silver chloride nanoparticles showed an intense peak at the wavelength of 400 nm after 20 hrs of biomass incubation. The size of the silver nanoparticles ranges from 20 to 60 nm which was obtained from transmission electron microscope (TEM). The X-ray diffraction (XRD) pattern confirmed the crystalline nature of the nanoparticles. The bright circular spots of selected diffraction area (SAED) pattern also confirmed the good crystalline nature of the silver chloride nanoparticles with high magnification of TEM images. The presence of nitrate reductase enzyme in the cellular membrane of B. subtilis was confirmed by sodium dodecyl (SDS) polyacrylamide gel electrophoresis and it was found that the molecular weight is 37 kDa. The possible functional groups of the reductase enzyme in B. subtilis were identified by Fourier transform infrared spectroscopy (FTIR). Finally, antifungal activity of silver chloride nanoparticle was examined against Candida albicans, Aspergillus niger, and Aspergillus flavus. We conclude that the synthesis of silver chloride nanoparticles using microorganisms is more economical and simple. The antifungal property of silver chloride nanoparticles will play a beneficial role in biomedical nanotechnology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.