Abstract

Chitosan (CS) is one of the most abundant biopolymers in nature with superior properties such as biocompatibility, biodegradability, lack of toxicity, antimicrobial activity, acceleration of wound healing, and stimulation of the immune system. In this study, chitosan was extracted from the exoskeletons of beetles (Pimelia payraudi latreille) and then used for the biosynthesis of highly pure MgO NPs and ZnO NPs by a facile greener route. The extracted chitosan exhibited excellent physicochemical properties, including high extraction yield (39%), high degree of deacetylation (90%), low ash content (1%), high fat-binding capacity (366%), and unusual crystallinity index (51%). The MgO NPs and ZnO NPs exhibited a spherical morphology with crystallite sizes of 17nm and 29nm, particle sizes of about 20-70nm and 30-60nm, and band gap energies of 4.43 and 3.34eV, respectively. Antibacterial assays showed that the extracted chitosan exhibited high antibacterial activity against Gram-positive and -negative bacteria, while ZnO NPs showed much stronger antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. For MgO NPs, the antibacterial activity against Gram-positive bacteria was lower than against Gram-negative bacteria. The results suggest that the synthesized MgO NPs and ZnO NPs are excellent antibacterial agents for therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call