Abstract
Interleukin (IL) 36 is a member of the IL-1-like proinflammatory cytokine family that has a protective role in mucosal immunity. We hypothesized that mucosal delivery of IL-36γ to the intestine would be a very effective way to prevent intestinal diseases. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse IL-36γ (rmIL-36γ). Western blotting and enzyme-linked immunosorbent assay results showed that the engineered strain (NZ-IL36γ) produced and hypersecreted the designed rmIL-36γ in the presence of nisin, which induces the expression of the recombinant gene. We administered NZ-IL36γ to mice via oral gavage, and collected the ruminal contents and rectal tissues. Colony PCR using primers specific for NZ-IL36γ, and enzyme-linked immunosorbent assay to measure the rmIL-36γ concentrations of the ruminal contents showed that NZ-IL36γ colonized the mouse intestines and secreted rmIL-36γ. A microbiota analysis revealed increased abundances of bacteria of the genera Acetatifactor, Eubacterium, Monoglobus, and Roseburia in the mouse intestines. Real-time quantitative PCR of the whole colon showed increased Muc2 expression. An in vitro assay using murine colorectal epithelial cells and human colonic cells showed that purified rmIL-36γ promoted Muc2 gene expression. Taken together, these data suggest that NZ-IL36γ may be an effective and attractive tool for delivering rmIL-36γ to improve the intestinal environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.