Abstract

The anti-nociceptive mechanisms of MgO and ZnO nanoparticles have not been thoroughly investigated; in this study, we evaluated the effects of anti-nociceptive dose of MgO and ZnO NPs on glutamate level and NMDA receptor subunits expression (NR1, NR2 and NR2B) in the rat whole hippocampus with and without acute restraint stress. Adult rats were divided into control, MgO and ZnO NPs 5 mg/kg, the stress of 90 min alone and with MgO or ZnO NPs 5 mg/kg groups. All components injected intraperitoneally and the nociceptive response was measured with hot plate apparatus 90 min after injections or stress induction. Magnesium, zinc, glutamate levels and NMDA receptor subunits expression were measured in the animal hippocampus. MgO NPs, ZnO NPs and acute stress induced anti-nociceptive effect. MgO NPs observably decreased glutamate and increased magnesium levels and NR2B subunit expression. ZnO NPs decreased glutamate level. Stress elevated endogenous magnesium and zinc levels and also the NR2B expression, but did not change glutamate level. MgO and ZnO NPs in the presence of stress increased the glutamate level and ZnO NPs increased the zinc and the NR2A expression. Stress decreased endogenous magnesium in the hippocampus. MgO and ZnO NPs could affect pain perception by changing glutamate level in the whole hippocampus tissue, while ion level changes followed by injection could probably affect the gene expression in the presence and the absence of stress. It seems that stress indirectly could adverse nanoparticles effects on glutamate level and increase zinc ion releasing from ZnO NPs by activating the gene expression without affecting pain perception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call