Abstract

This study focused on the mechanical characterisation of 3D printed biopolymer geogrids for civil and geotechnical engineering applications. The polylactic acid specimens were designed based on first-order similitude conditions and were produced by fused deposition modelling techniques. An experimental programme was carried out to investigate the mechanical behaviour of 1:2 scale model geogrids undergoing tensile loading conditions, in order to explore their use in soil reinforcement and stabilisation of geomaterials. The secant stiffness at 2.0% of strain and the ultimate tensile strength were used for this purpose. The results showed an average tensile strength of 4.5 ± 0.5 kN/m, which is in good agreement with that of fossil oil-derived polymer prototypes, while presenting a significantly lower elongation at failure. The printing process appeared stable and replicable. The influence of degradation on the tensile properties of 3D printed polylactic acid geogrids over time still needs to be studied.
 Keywords: geogrid, additive manufacturing, biopolymer, tensile strength, geotechnics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.