Abstract

Recent efforts use state-of-the-art Recurrent Neural Networks (RNN) to gain insight into neuroscience. A limitation of these works is that the used generic RNNs lack biophysical meaning, making the interpretation of the results in a neuroscience context difficult. In this paper, we propose a biophysically interpretable RNN built on the Dynamic Causal Modelling (DCM). DCM is an advanced nonlinear generative model typically used to test hypotheses of brain causal architectures and associated effective connectivities. We show that DCM can be cast faithfully as a special form of a new generalized RNN. In the resulting DCM-RNN, the hidden states are neural activity, blood flow, blood volume, and deoxyhemoglobin content and the parameters are biological quantities such as effective connectivity, oxygen extraction fraction and vessel wall elasticity. DCM-RNN is a versatile tool for neuroscience with great potential especially when combined with deep learning networks. In this study, we explore sparsity- based causal architecture discovery with DCM-RNN. In the experiments, we demonstrate that DCM-RNN equipped with $l_{1}$ connectivity regulation is more robust to noise and more powerful at discovering sparse architectures than classic DCM with $l_{2}$ connectivity regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.