Abstract

Nanoparticles have recently gained increased attention as drug delivery systems for the treatment of cancer due to their minute size and unique chemical properties. However, very few studies have tested the biophysical changes associated with nanoparticles on metastatic cancer cells at the cellular and sub-cellular scales. Here, we investigated the mechanical and morphological properties of cancer cells by measuring the changes in cell Young’s Modulus using AFM, filopodial retraction (FR) by time lapse optical light microscopy imaging and filopodial disorganization by high resolution AFM imaging of cells upon treatment with nanoparticles. In the current study, nanomechanical changes in live murine metastatic breast cancer cells (4T1) post exposure to a nanodiamond/nanoplatinum mixture dispersed in aqueous solution (DPV576), were monitored. Results showed a decrease in Young’s modulus at two hours post treatment with DPV576 in a dose dependent manner. Partial FR at 20 min and complete FR at 40 min were observed. Moreover, analysis of the retraction distance (in microns) measured over time (minutes), showed that a DPV576 concentration of 15%v/v yielded the highest FR rate. In addition, DPV576 treated cells showed early signs of filopodial disorganization and disintegration. This study demonstrates the changes in cell stiffness and tracks early structural alterations of metastatic breast cancer cells post treatment with DPV576, which may have important implications in the role of nanodiamond/nanoplatinum based cancer cell therapy and sensitization to chemotherapy drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.