Abstract
The halophilic bacterium Halomonas smyrnensis from a modern salt lake used in experiments to induce biomineralization has resulted in the precipitation of monohydrocalcite and other carbonate minerals. In this study, a Halomonas smyrnensis WMS-3 (GenBank:MH425323) strain was identified based on 16S rDNA homology comparison, and then cultured in mediums with 3% NaCl concentration to induce monohydrocalcite at different Mg/Ca molar ratios of 0, 2, 5, 7, and 9. The growth curve of WMS-3 bacteria, pH values, NH4+ concentration, HCO3− and CO32− concentration, carbonic anhydrase (CA) activity, and the changes in Ca2+ and Mg2+ ion concentration were determined to further explore the extracellular biomineralization mechanism. Moreover, the nucleation mechanism of monohydrocalcite on extracellular polymeric substances (EPS) was analyzed through studying ultrathin slices of the WMS-3 strain by High resolution transmission electron microscopy (HRTEM), Selected area election diffraction (SAED), Scanning transmission electron microscopy (STEM), and elemental mapping, besides this, amino acids in the EPS were also analyzed. The results show that pH increased to about 9.0 under the influence of ammonia and CA activity. The precipitation ratio (%, the ratio of the mass/volume concentration) of the Ca2+ ion was 64.32%, 62.20%, 60.22%, 59.57%, and 54.42% at Mg/Ca molar ratios of 0, 2, 5, 7, and 9, respectively, on the 21st day of the experiments, and 6.69%, 7.10%, 7.74%, 8.09% for the Mg2+ ion concentration at Mg/Ca molar ratios 2, 5, 7, and 9, respectively. The obtained minerals were calcite, Mg-rich calcite, aragonite, and hydromagnesite, in addition to the monohydrocalcite, as identified by X-ray diffraction (XRD) analyses. Monohydrocalcite had higher crystallinity when the Mg/Ca ratio increased from 7 to 9; thus, the stability of monohydrocalcite increased, also proven by the thermogravimetry (TG), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC) analyses. The C=O and C–O–C organic functional groups present in/on the minerals analyzed by Fourier transform infrared spectroscopy (FTIR), the various morphologies and the existence of P and S determined by scanning electron microscope-energy dispersive spectrometer (SEM-EDS), the relatively more negative stable carbon isotope values (−16.91‰ to −17.91‰) analyzed by a carbon isotope laser spectrometer, plus the typical surface chemistry by XPS, all support the biogenesis of these mineral precipitates. Moreover, Ca2+ ions were able to enter the bacterial cell to induce intracellular biomineralization. This study is useful to understand the mechanism of biomineralization further and may provide theoretical reference concerning the formation of monohydrocalcite in nature.
Highlights
Calcium carbonate is of great scientific significance in biomineralization and the Earth Sciences generally
The H. smyrnensis WMS-3 strain was identified by 16S rDNA homology comparison and this was used to induce the precipitation of calcium carbonate in a fluid containing 3% NaCl at different
The results show that WMS-3 bacteria can increase the pH to about
Summary
Calcium carbonate is of great scientific significance in biomineralization and the Earth Sciences generally. Calcium carbonate minerals at Earth’s surface conditions include the common polymorphs calcite, aragonite, and vaterite, and the less common hydrated phases of monohydrocalcite (CaCO3 ·H2 O) and ikaite (CaCO3 ·6H2 O) [15,16,17,18,19,20,21,22,23,24,25,26,27]. Before monohydrocalcite was discovered in the marine environment, it had been induced by the moderately halophilic species Halomonas eurihalina and Bacillus siamensis in both solid and liquid media in the laboratory; at that time, the focus was on the influence of salinity and temperature on the minerals precipitated [29,30,31].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.