Abstract

The relationship between branchial carbonic anhydrase (CA) activity, CA gene expression and salinity, and potential mechanisms of regulation, was investigated in the euryhaline green crab, Carcinus maenas, acclimated to 33 ppt and transferred to 10 ppt, and the stenohaline rock crab, Cancer irroratus, acclimated to 32 ppt and transferred to 18 ppt. CA activity in green crabs acclimated to high and low salinity was a function of CA mRNA expression, with low salinity exposure resulting in an increase in both CA expression and activity. Eyestalk ablation (ESA) in green crabs acclimated to high salinity resulted in an increase in CA expression in the posterior, ion-transporting gills, in the absence of the low salinity stimulus. There were no changes in CA activity or expression in the anterior, respiratory gills. ESA also potentiated low salinity-stimulated CA induction, again, only in posterior gills. There were no changes in CA activity in any gills of Cancer irroratus, in response to either ESA or low salinity. These results suggest that CA expression in euryhaline, osmoregulating species, is under inhibitory regulation by a putative repressor found in the eyestalk, and that this mechanism is absent in stenohaline, osmoconforming species. CA expression is maintained at low, baseline levels in crabs acclimated to high salinity by the presence and action of this compound. The effects of the repressor appear to be reduced upon exposure to low salinity, allowing CA induction to occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.