Abstract

Mass-spectrometric measurements of 18O exchange from 13C18O2 were used to follow changes in the intracellular carbonic anhydrase (CA) activity of cells of Chlamydomonas reinhardtii Dang, wild type and the ca-1 mutant during adaptation to air. With intact cells as well as with crude homogenates total intracellular CA activity in wild-type cells increased six to tenfold within 4 h after transferring cells from 5% CO2 (high inorganic carbon, Ci) to ambient air (air adapted). After that time the activity slowly declined to a level similar to that observed with cells which had been continuously grown in air (low-Ci grown). In the ca-1 mutant, total CA was induced to a similar extent during 4 h of adaptation; however, absolute activities were two to three times lower in ca-1 than in the wild type regardless of the CO2 supply. When crude extracts from wild-type cells were separated into soluble and insoluble fractions, each fraction contained about half of the internal CA activity. Within 4 h of adaptation, both forms of CA activity were simultaneously enhanced by nine to tenfold, reaching levels similar to those found in low-Cigrown cells. In contrast, in the ca-1 mutant the soluble CA activity was only enhanced by about eightfold while the level of insoluble CA was very low even in low-Ci cells. After isolation of intact chloroplasts from wild-type cells and further subfractionation, around 70–80% of total chloroplastic CA activity was found to be in the insoluble fraction while 17–20% remained in the soluble fraction. Both chloroplastic CA activities were inducible within the first 4 h of adaptation to air, with each of them being eight to ten times higher than in high-Ci algae. After that time their activities were similar to the corresponding CA values in low-Ci-grown cells. In contrast, plastids from high-Ci cells of the ca-1 mutant showed 40% less insoluble-CA activity compared to the wild type and this insoluble-CA activity was not increased at all by transferring algae to air. In addition, no soluble-CA activity was detected in chloroplasts from high-Ci and air-adapted ca-1 cells. These results indicate the presence of three intracellular CA activities in high-Ci air-adapted and low-Ci cells of the wild type and that two of them are associated with the chloroplasts. All three activities are completely induced within the first 4 h of adaptation to air in wild-type cells. In contrast, it was not possible to induce any of the chloroplastic CA activities in the ca-1 mutant. The possibility that the soluble chloroplastic CA represents a pyrenoid-located CA is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.