Abstract
Perovskite-based solar cells (PSCs) have emerged as highly promising in photovoltaics. New techniques are being developed for enhancing the device's lifetime and performance. However, damaged or end-of-life lead-perovskite solar modules pose significant health and environmental risks due to the release of Pb2+ ions into the environment. This work developed an electrochemical detection of lead ions leached from degraded PSCs to address this issue. The biomimicking architecture of the sensing moiety was designed to replicate the interaction between lead ions and amino acids in various proteins, enabling more specific detection. Here, aminopropyl trimethoxysilane-functionalized metal-organic framework/ZIF-67 (ZIF-N) was used to detect lead, specifically in water leaked from lead-based PSCs. The ZIF-67-based sensing element, combined with a carbon paste electrode, exhibited a selective interaction with lead ions, allowing for the detection of lead in water as low as 60 ppb. This detection strategy relies on measuring changes in electronic properties using an electrochemical approach. Real-time lead detection in perovskite-contaminated water was successfully demonstrated using the differential pulse voltammetry technique, with ZIF-N as the sensing element.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have