Abstract
Statement of problemOsseodensification, a counterclockwise drilling technique for the placement of endosseous implants is a popular clinical technique. However, the effect of the osseodensification technique on primary implant stability, bone-implant contact, and bone area frequency occupancy is unclear. PurposeThe purpose of this systematic review and meta-analysis was to investigate the biomechanical and histomorphometric outcomes of endosteal implants placed by using the osseodensification technique in animal models. Material and methodsAn electronic search through Medline/PubMed, Lilacs, and Science Direct databases, and an additional manual search of the reference list of included articles was conducted by using specific keywords and Medical Subject Headings (MeSH) terms for articles in the English language and published up to April 31, 2020. Only animal studies comparing the biomechanical and histomorphometric outcomes of endosteal implants placed by using the osseodensification and conventional drilling protocol were included. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) tool was used to determine the risk of bias assessment, and the quality of included studies was assessed by using Animal Research: Reporting in Vivo Experiments (ARRIVE) guidelines. ResultsNine studies were included. The results of the meta-analysis showed that the pooled weighted mean difference of the insertion torque value for the primary implant stability of endosseous dental implants placed by using the osseodensification technique was 2.270 (95% confidence interval [CI]=1.147 to 3.393; P<.001), the weighted mean difference of the percentage of bone-implant contact at 3 weeks was 0.487 (95% CI=0.220 to 0.754; P=.114), the weighted mean difference of the percentage of bone-implant contact at 6 weeks was 0.565 (95% CI=0.219 to 0.911; P=.448), the weighted mean difference of the percentage of bone area frequency occupancy at 3 weeks was 0.679 (95% CI=0.265 to 1.093; P=.073), and the weighted mean difference of the percentage of bone area frequency occupancy at 6 weeks was 0.391 (95% CI=-0.204 to 0.986; P=.027). ConclusionsLimited data from animal studies suggest that the primary implant stability, bone-implant contact, and bone area frequency occupancy significantly improved for the endosteal implants placed by using the osseodensification technique compared with conventional drilling protocol. However, additional laboratory and clinical studies are recommended to provide stronger evidence.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have