Abstract
The natural nacre has a regular ordered layered structure of calcium carbonate tablets and ion crosslinking proteins stacked alternately, showing outstanding mechanical properties. Inspired by nacre, we fabricated different divalent metal cation-crosslinked montmorillonite-alginate hybrid films (MMT-ALG-X2+; X2+ = Cu2+, Cd2+, Ba2+, Ca2+, Ni2+, Co2+ or Mn2+). The effect of ionic crosslinking strength and hydrogen bond interaction on the mechanical properties of the nacre-mimetics was studied. With the cations affinities with ALG being increased (Mn2+ < Co2+ = Ni2+ < Ca2+ < Ba2+ < Cd2+ < Cu2+), the tensile strength of nacre-mimetics showed two opposite influence trends: Weak ionic crosslinking (Mn2+, Co2+, Ni2+ and Ca2+) can synergize with hydrogen bonds to greatly increase the tensile properties of the sample; Strong ionic crosslinking (Ba2+, Cd2+, Cu2+) and hydrogen bonding form a competitive relationship, resulting in a rapid decrease in mechanical properties. Mn2+ crosslinking generates optimal strength of 288.0 ± 15.2 MPa with an ultimate strain of 5.35 ± 0.6%, obviously superior to natural nacre (135 MPa and 2%). These excellent mechanical properties arise from the optimum synergy of ion crosslinking and interfacial hydrogen bonds between crosslinked ALG and MMT nanosheets. In addition, these metal ion-crosslinked composite films show different colors, high visible transparency, and excellent UV shielding properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.