Abstract
Objective:This study reports a novel eco-friendly biosynthesis of Silver Nanoparticles (AgNPs) from Exopolysaccharides (EPS) ofLentinus edodesafter an attempt to optimise the production of EPS through mutagenesis. It further describes some potential application of silver nanoparticles in water treatment.Methods:A wild strain ofL. edodeswas subjected to UV irradiation, a physical mutagen, at 254 nm. The wild and resultant irradiated strains were then assessed for the production of EPS and subsequent application of the crude EPSs for biosynthesis of AgNPs. The particles were characterised by colour pattern and UV-visible spectroscopy. Based on superior EPS production and nanoparticle attributes, nanoparticles obtained from UV irradiated process were further subjected to Scanning Electron Microscopy (SEM). EPS produced was quantified by the phenol-sulphuric acid method and studied by GC-MS.Results:Results obtained for EPS productivity indicated the presence of monomer sugars such as arabinose (50.65%), mannose (19.20%), mannitol (15.58%), fructose (7.96%), trehalose (6.49%), and glucuronic acid, xylose, galactose and glucose with low percentages of ≤ 0.11. EPS productivity of wild and mutant strains was obtained as 1.044 and 2.783 mg/ml, respectively, after 7 days of fermentation. The result of EPS production for UV irradiated strain corresponds to a yield improvement of 2.7 fold of the wild-type. UV Spectroscopy and SEM analysis studies on EPS nanoparticle product of the improved (UV irradiated) strain indicated the formation of AgNPs at the absorption band of 421 nm with a size range of 50-100 nm.Conclusion:This study, which aimed at eco-friendly synthesis of myco-nanoparticle has established the novel ability ofL. edodes’polysaccharide in silver nanoparticles biosynthesis. It expounded potential frontiers of silver nanoparticles application in the water industry. To the best of the authors’ knowledge, this result represents the first report on the biosynthesis of AgNPs usingL. edode’sEPS.
Highlights
Nanotechnology is the study, construction and utilisation of materials in the physical range of 1-100 nm [1]
This study reports a novel eco-friendly biosynthesis of Silver Nanoparticles (AgNPs) from Exopolysaccharides (EPS) of Lentinus edodes after an attempt to optimise the production of EPS through mutagenesis
This study, which aimed at eco-friendly synthesis of myco-nanoparticle has established the novel ability of L. edodes’ polysaccharide in silver nanoparticles biosynthesis
Summary
Nanotechnology is the study, construction and utilisation of materials in the physical range of 1-100 nm [1]. In order to meet the challenge of water purification, several techniques like adsorption, biosorption, electrochemical treatments, evaporation, flotation, ion exchange, membrane filtration, oxidation, precipitation and reverse osmosis processes are extensively used [7 - 9]. Such previous applications have been restricted due to various shortcomings [10, 11]. Nanoparticles are expected to be of vital importance in water treatment technology of the future [12] for which research is still at infancy. The large surface area of nanoparticles, catalytic potential and high reactivity, makes them better adsorbing materials than conventional treatment technologies [10]. Some advantages and disadvantages of previous water treatment methods are provided in Ali et al [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.