Abstract

The present investigation was aimed at the evaluation of synthesis, characterization and antimicrobial activity of Ixora brachypoda DC. leaf extract mediated silver nanoparticles (AgNPs). The AgNPs were characterized by UV–Visible (UV–Vis) spectrophotometer, Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM), Scanning electron microscopy (SEM) with Energy dispersive X-ray spectrometry (EDS), Transmission electron microscopy (TEM), Zeta potential and X-ray diffractometry (XRD). Finally, the antimicrobial activity of synthesized AgNPs was investigated against pathogenic microorganisms. The absorption peak, obtained at 423 nm in UV–Vis analysis, confirmed the synthesis of AgNPs and the presence of biological functional groups involved in the capping and stabilization were determined by FTIR analysis. The other characterizations revealed the details about the AgNPs as spherical, poly-dispersed and size ranging from 18 to 50 nm with an average diameter of 27.76 nm. The zeta potential was calculated to be −30.4 mV and the typical Bragg’s planes in the metallic silver range indicated the confirmation of AgNPs formation. The in-vitro analysis confirmed the antimicrobial potential of I. brachypoda leaf aqueous extract synthesized AgNPs, which effectively inhibited the growth of pathogens and it can be concluded that the I. brachypoda AgNPs can be used as broad-spectrum antimicrobials against multi-drug resistant microbial pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call