Abstract

Bipolar electrochemistry successfully realized the electrodeposition of calcium alginate hydrogels in specific target areas in tissue engineering. However, the shape and quantity of three-dimensional cannot be accurately controlled. We presented a novel growth model for fabricating hydrogels based on bipolar electrochemical by patterned bipolar electrodes using photolithography. This work highlights pattern customization and quantitative control of hydrogels in cell culture platforms. Furthermore, alginate hydrogels with different heights can be controlled by adjusting the key parameters of the growth model. This strategy exhibits promising potential for cell-oriented scaffolds in tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.