Abstract

This study presents a simple, eco-friendly, and cost-effective method for synthesizing molybdenum trioxide nanoparticles (MoO3 NPs) using the medicinal plant Hemigraphis alternata. The physicochemical characterization confirmed the formation of orthorhombic MoO3 NPs. The green synthesized NPs exhibited remarkable antioxidant and antimicrobial properties against multi drug-resistant bacteria (S. aureus and P. aeruginosa) and fungi (A. niger and C. albicans) in a concentration-dependent manner. Hemocompatibility assessments on human erythrocytes suggested their potential application in wound healing. Cytotoxicity evaluations on mouse fibroblast cell lines demonstrated no harmful effects. Furthermore, in vitro scratch assays revealed over 90% wound healing activity without cytotoxicity. The findings indicate that these green synthesized MoO3 NPs hold promise for incorporation into wound dressings, offering a safe and effective solution for infectious wound healing. This study represents a novel effort to update practitioners on the latest developments in the widespread use of green synthesized NPs in medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call