Abstract
An anaerobic/aerobic moving-bed biofilm (A/O-MBBR) reactor system was constructed, and the treatment efficiency of aqueous antibiotics in wastewater was investigated. The effects of antibiotics on the microbial communities in the A/O-MBBR were also investigated. Under the optimized reaction conditions, removal of tetracycline antibiotics (TCs) was studied in a series of experiments. When a low concentration of tetracycline (TC) was added to the reactor system, high removal efficiency of conventional pollutants (TC concentration decreased from 10 turn to 2.8μgL-1) was achieved. When mixed TCs (50μgL-1) were added to the system, the removal efficiencies of chlortetracycline (CTC), TC and oxytetracycline (OTC) reached 52.03, 41.79, and 38.42%, respectively. TC degradation was decreased to 21.16% when the antibiotic concentration was 500μgL-1; exposure to this TC concentration destroyed the community structure of the activated sludge bacteria in the reactor. The products of the biodegradation analysis revealed the possible degradation pathways functioning in the experimental A/O-MBBRs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have