Abstract
Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and mixed liquor suspended solids; and perform dynamic simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.