Abstract

Research was undertaken to develop a diffusional model of the biofilm that can be applied in lieu of a semi-empirical model to upgrade an activated sludge system to an integrated fixed-film activated sludge (IFAS) or moving-bed biofilm reactor (MBBR) system. The model has been developed to operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more of the zone cells, except the anaerobic zone cells. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. The biofilm is divided into 12 layers and has a stagnant liquid layer. Diffusion and substrate utilization are calculated for each layer. The equations are solved simultaneously using a finite difference technique. The biofilm flux model is then linked to the activated sludge model. Advanced features include the ability to compute the biofilm thickness and the effect of biofilm thickness on performance. The biofilm diffusional model is also used to provide information and create a table of biofilm yields at different substrate concentrations that can be used in the semi-empirical model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.