Abstract

Poly (lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) are two of biodegradable plastics with the highest production capacities in 2021. Bioplastic waste management can be easily integrated with organic waste management, especially when bioplastics are used as food packaging material, since they are potentially biodegradable. The aim of this study was to assess the biodegradability of biodegradable polymer-coated paper (BPCP) and bioplastic bags made from PBAT/PLA blend during mesophilic and thermophilic anaerobic digestion (AD) and to reveal the changes in the physicochemical properties of the bioplastics. BPCP obtained 155 NmL-CH4/g VS and 307.3 NmL-CH4/g VS under mesophilic and thermophilic conditions, respectively, but left bioplastic film residues. The bioplastic bags did not exhibit significant biodegradation during the AD processes. 1H NMR results indicated that the ratio of PLA to PBAT decreased significantly after AD of the BPCP film and that PLA monomers were formed from the bioplastic bags, leading to a decrease in the hydrophobicity on the surfaces of the materials. Methanoculleus was found to be enriched on the bioplastic surface after mesophilic AD. From the perspective of coupling bioplastic waste management with the food waste management, the incorporation of BPCP into the AD reactor not only enhances system stability and methane production to a greater extent than biodegradable plastic bags but also raises concerns regarding the residual biofilm when utilizing the digestate for direct land applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call