Abstract
Polymeric membranes have garnered remarkable attention, attributed to the significant breakthrough in the filtration of oily wastewater. However, the major setbacks of pristine polymeric membranes include susceptibility to fouling and chemical instability. Addressing such issues, this work focusses in the modification of polymer membranes using a metal oxyhalide, such as Bismuth oxychloride (BiOCl). This modification not only enhances water purification capabilities but also strengthens the membrane, protecting it from environmental deterioration and extending its lifespan. BiOCl was integrated into an electrospun pristine nanofibrous polymeric membrane using hydrothermal technique. The synthesized membrane matrix displayed superhydrophilicity and underwater superoleophobicity, effectively separating oil-in-water mixtures and emulsions. Moreover, BiOCl was effectively utilized to assess organic pollutant adsorption and degradation through photocatalysis. In addition, the membrane exhibited exceptional recyclability and withstood harsh conditions, contributing to its mechanical stability. The numerous advantages, enhance the effectiveness of BiOCl modified membrane in water pollution remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.