Abstract

High-efficiency and cost-effective catalysts are critical to completely mineralization of organic contaminants for in-situ groundwater remediation via advanced oxidation processes (AOPs). The engineered biochar is a promising method for waste biomass utilization and sustainable remediation. This study engineers maize stalk (S)- and maize cob (C)-derived biochars (i.e., SB300, SB600, CB300, and CB600, respectively) with oxygen-containing functional groups as a carbon-based support for nanoscale zero-valent iron (nZVI). Morphological and physiochemical characterization showed that nZVI could be impregnated within the framework of the synthesized Fe-CB600 composite, which exhibited the largest surface area, pore volume, iron loading capacity, and Fe0 proportion. Superior degradation efficiency (100% removal in 20 min) of trichloroethylene (TCE, 0.1 mM) and fast pseudo-first-order kinetics (kobs =22.0 h−1) were achieved via peroxymonosulfate (PMS, 5 mM) activation by the Fe-CB600 (1 g L−1) under groundwater condition (bicarbonate buffer solution at pH = 8.2). Superoxide radical and singlet oxygen mediated by Fe0 and oxygen-containing group (i.e., CO) were demonstrated as the major reactive oxygen species (ROSs) responsible for TCE dechlorination. The effectiveness and mechanism of the Fe/C composites for rectifying organic-contaminated groundwater were depicted in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call