Abstract

Due to the pathogen’s ability to survive in the soil for longer durations, soil-borne diseases are often difficult to control. This study investigates the multifaceted impacts of biochar on the management of stem rot disease in groundnut and its influence on soil properties and microbial communities. The effects of biochar at different concentrations, such as 0%, 1%, 3%, and 5% on groundnut stem rot disease incited by Sclerotium rolfsii were evaluated thoroughly. Under laboratory conditions, biochar exhibited no direct inhibitory effects on S. rolfsii at varying concentrations but revealed an indirect suppression of sclerotial body production, suggesting a concentration-dependent influence on pathogen resting structures. Further, it was observed that biochar treatments effectively delayed symptom onset and reduced disease progression in groundnut plants, with significant variation observed among genotypes and biochar concentrations. Notably, interactions involving genotypes ICGV 171002 and ICGV 181035 with BC2 + Sr (3% conc. of biochar + S. rolfsii) and BC3 + Sr (5% conc. of biochar + S. rolfsii) treatments showed superior efficacy in disease reduction under controlled conditions. Field evaluations confirmed these findings, highlighting genotype-specific responses to biochar treatments. However, no significant difference was observed between BC2 + Sr (3%) and BC3 + Sr (5%) treatments in managing stem rot disease compared to controls. Biochar application significantly increased soil nutrient levels, including nitrogen, phosphorus, and potassium, and increased soil organic matter content, EC, pH, emphasizing its potential to improve soil fertility. Overall, these findings highlight the potential benefits of biochar for sustainable agriculture through disease management, soil nutrient enrichment, and microbial modulation, warranting further investigation into optimal application strategies across different agricultural contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.