Abstract

To compare the dynamic effects of straw and corresponding biochar on soil acidity, nutrients, and exchangeable capacity in red soil, a pot experiment was performed. The treatments included control (CK), rice straw (R1B0), rice straw biochar prepared at 350℃ (R1B1) and 550℃ (R1B2), rape stalk (R2B0), and rape stalk biochar prepared at 350℃ (R2B1) and 550℃ (R2B2). Straw at 1% and corresponding biochar were added to a strongly acidic red soil. The rice was planted as the experimental crop. Soils were collected at the seedling, tillering, filling and mature stages of rice growth, respectively. The changes in soil pH, exchangeable acidity, organic matter, nutrients (NH4+-N and NO3--N), and exchangeable cations in soils were measured. The results showed that soil pH, NH4+-N, and NO3--N concentrations decreased with the growth period of rice, while the organic matter content and cation exchange capacity (CEC) increased. Direct returning of straw and biochar could increase soil pH, organic matter content, and exchangeable cations content, and reduce the total amount of exchangeable acids. In the mature stage of rice, rice straw and rape stalk biochar at 350℃ increased the soil pH by 0.29 and 0.42, respectively, compared to the control treatment. Similarly, biochar decreased the exchangeable acidity and exchangeable Al3+ content significantly compared to the direct returning treatments of straw. The exchangeable acidity and exchangeable Al3+ contents of soils in R1B2 and R2B1 treatments decreased by 54.8% and 58.9%, respectively, compared to the control treatment. The soil organic matter (SOM) content and CEC in biochar treatments were significantly higher than those in direct returning treatments of straw. Overall, the effects of rape stalk biochar on soil properties were slightly stronger than those of rice straw. The correlation analysis showed that soil exchangeable acids had a significantly negative correlation with organic matter (R=-0.912, P<0.01), and CEC (R=-0.866, P<0.05). The CEC in soils was positively related to organic matter (R=0.833, P<0.05). Direct returning of straw and biochar applications can effectively improve soil acidity and increase nutrient contents. The effects of straw biochar on soils were stronger than the direct returning of straw in decreasing soil acidity, and increasing soil organic matter content and exchangeable capacity in acidic soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.