Abstract

Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds.

Highlights

  • IntroductionThere is potential for nanoparticles to effectively deliver essential trace minerals in animal feed, with the potential for increased mineral bioavailability

  • Nanotechnology has been widely adopted as a new trend in many fields

  • Coating the Nano-ZnO with L-methionine was achieved by grinding the dry zinc oxide nanoparticles (100.2 g, 25 nm) with L-methionine (200.0 g, Glentham Life Sciences, London, UK) in a colloidal mixer, producing a eutectic melt that hardened to a white solid which was ground with a pestle and mortar to a fine powder

Read more

Summary

Introduction

There is potential for nanoparticles to effectively deliver essential trace minerals in animal feed, with the potential for increased mineral bioavailability. This improved availability can be attributed to both the small size and large surface area to volume ratio of these particles [1,2,3]. The incorporation of a functionalised coating such as an amino acid can improve the stability of nanoparticles in solution and assist their uptake [4]. A novel process has been developed for producing coated nanoparticle minerals which may have an application in the delivery of supplementary minerals. For initial studies to quantify nanoparticle bioavailability of minerals in broilers, zinc was chosen as a mineral which requires supplementation, but where tolerance in the birds is high

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call